Identification of electrophysiologically distinct cell subpopulations in Necturus taste buds
نویسندگان
چکیده
We used the patch clamp technique to record from taste cells in thin transverse slices of lingual epithelium from Necturus maculosus. In this preparation, the epithelial polarity and the cellular organization of the taste buds, as well as the interrelationships among cells within the taste bud, were preserved. Whole-cell recording, combined with cell identification using Lucifer yellow, allowed us to identify distinct subpopulations of taste cells based on their electrophysiological properties. Receptor cells could be divided in two groups: one group was characterized by the presence of voltage-gated Na+, K+, and Ca2+ currents; the other group was characterized by the presence of K+ currents only. Therefore, receptor cells in the first group would be expected to be capable of generating action potentials, whereas receptor cells in the second group would not. Basal taste cells could also be divided into two different groups. Some basal cells possessed voltage-gated Na+, K+, and Ca2+ conductances, whereas other basal cells only had K+ conductance. In addition to single taste cells, we were able to identify electrically coupled taste cells. We monitored cell-cell coupling by measuring membrane capacitance and by observing Lucifer yellow dye coupling. Electrical coupling in pairs of dye-coupled taste receptor cells was strong, as indicated by experiments with the uncoupling agent 1-octanol. Electrically coupled receptor cells possessed voltage-gated currents, including Na+ and K+ currents. The electrophysiological differentiation among taste cells presumably is related to functional diversifications, such as different chemosensitivities.
منابع مشابه
Membrane properties of two types of basal cells in Necturus taste buds.
Necturus taste buds contain two types of basal cells: presumptive stem cells and Merkel-like basal cells. Both types of basal cells are small round cells located at the base of the taste bud, indistinguishable from each other with light microscopy. However, with electron microscopy, autoradiography, or immunocytochemistry, these two types of basal cells can be easily distinguished. We isolated ...
متن کاملEstimation of the junctional resistance between electrically coupled receptor cells in Necturus taste buds
Junctional resistance between coupled receptor cells in Necturus taste buds was estimated by modeling the results from single patch pipette voltage clamp studies on lingual slices. The membrane capacitance and input resistance of coupled taste receptor cells were measured to monitor electrical coupling and the results compared with those calculated by a simple model of electrically coupled tast...
متن کاملSerotonin modulates voltage-dependent calcium current in Necturus taste cells.
Necturus taste buds contain two primary cell types: taste receptor cells and basal cells. Merkel-like basal cells are a subset of basal cells that form chemical synapses with taste receptor cells and with innervating nerve fibers. Although Merkel-like basal cells cannot interact directly with taste stimuli, recent studies have shown that Merkel-like basal cells contain serotonin (5-HT), which m...
متن کاملPutative Mammalian Taste Receptors A Class of Taste-Specific GPCRs with Distinct Topographic Selectivity
Taste represents a major form of sensory input in the animal kingdom. In mammals, taste perception begins with the recognition of tastant molecules by unknown membrane receptors localized on the apical surface of receptor cells of the tongue and palate epithelium. We report the cloning and characterization of two novel seven-transmembrane domain proteins expressed in topographically distinct su...
متن کاملAfferent neurotransmission mediated by hemichannels in mammalian taste cells.
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 102 شماره
صفحات -
تاریخ انتشار 1993